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Abstract. A relation between the average length of loops and their free energy is obtained for
a variety of O(n)-type models on two-dimensional lattices, by extending to finite temperatures a
calculation due to Kast. We show that the (number) averaged loop lengthL̄ stays finite for all non-
zero fugacitiesn, and in particular it doesnot diverge upon entering the critical regime (n→ 2+).
Fully packed loop (FPL) models withn = 2 seem to obey the simple relationL̄ = 3Lmin, where
Lmin is the smallest loop length allowed by the underlying lattice. We demonstrate this analytically
for the FPL model on the honeycomb lattice and for the 4-state Potts model on the square lattice,
and based on numerical estimates obtained from a transfer matrix method we conjecture that this
is also true for the two-flavour FPL model on the square lattice. We present, in addition, numerical
results for the average loop length on the three critical branches (compact, dense and dilute) of
the O(n) model on the honeycomb lattice, and discuss the limitn→ 0. Contact is made with the
predictions for the distribution of loop lengths obtained by conformal invariance methods.

1. Introduction

Loop models appear in various contexts in statistical physics, not only as models of various
phases of polymers [1] but also in the high-temperature expansion of the O(n) spin model [2,3],
in surface growth models [4], in efficient cluster-flipping Monte Carlo methods [5], and in the
study of quantum spin systems [6]. They have deep connections with other well-studied
statistical models, such as the eight-vertex, colouring and Potts models [7,8], and they can be
viewed as toy models for the study of string theories. One of their main interests is that they
provide examples of systems involvingextendeddegrees of freedom, rather than local ones
as in spin systems, for which many exact results have been obtained ind = 2 using Bethe
ansatz [7], Coulomb gas [9] and conformal invariance methods [10].

The basic O(n) loop model is defined through the partition function

Z(n, t) =
∑
C
nP tV (1.1)

wheren is the loop fugacity, which controls the numberP of different loops (‘paths’) in the
configurationC, andt is a temperature-like variable which controls the numberV of empty
sites (‘voids’) not covered by any loop, the total number of sites on the lattice beingN‡.
For non-crossing loops on the honeycomb and square lattices a phase transition occurs at
n = nc = 2, for all temperatures below a lattice-dependenttc [3, 11]. That transition is very

† Laboratoire associé aux universit́es Paris 6, Paris 7 et au CNRS.
‡ This is the standard definition of the O(n)model on the honeycomb lattice [3]. On lattices with higher coordination
number a given site may be visited by more than one loop, necessitating the introduction of further weights in
equation (1.1) [11]. We shall come back to this point later on.
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weak and is reminiscent of the Kosterlitz–Thouless transition for theXY spin model, as the
free energy only has an essential singularity. The geometrical interpretation is simple: for
n > nc the configurations contributing toZ only contain finite loops in the thermodynamic
limit, whilst for n 6 nc there appear ‘infinite’ loops whose extent diverges with the lattice
size. This is analogous to what happens in lattice percolation models, where an infinite cluster
appears when the site (or bond) occupation probability is above a threshold valuepc [12], and
indeed the perimeters of percolation clusters can be viewed as special cases of loops [10,13].

Explicit formulae for the free energy per site, defined as

F(n, t) = lim
N→∞

1

N
logZ(n, t) (1.2)

can be obtained [14–16] along certain critical lines in the(n, t) plane [3] for the honeycomb
lattice, but the distribution of loop lengths cannot be inferred from the partition function, and
information about it is obtained numerically [8] or through scaling and conformal invariance
methods [17] (see the lectures by Cardy [10] for an introduction to the geometric properties of
loop models). We show in the first part of the present work that a simple relation, first derived
by Kast att = 0 in the honeycomb O(n)model [18], can be generalized to finite temperatures
and to a variety of other loop models. It gives the average loop lengthL̄ from the knowledge
of the free energy and its derivatives with respect ton andt only.

In the second part we use the exactly known results forF(n, t = 0) to calculate analytically
the average length at the fugacity where a transition occurs,nc = 2. We then present very
accurate numerical calculations of the average loop length, using a transfer matrix method
and our relation, at finite temperatures and for the zero-temperature O(n)model on the square
lattice. For both thet = 0 (fully packed) model on the honeycomb lattice and for the 4-state
Potts model on the square lattice we find the exact result

L̄ = 3Lmin (1.3)

whereLmin is the minimal loop length allowed by the given lattice. Contrary to what was
suggested in [18] on the basis of numerical results, the average length thus remainsfinite
for n = nc, and indeed for all non-zeron. This isa priori counter-intuitive, as one would
naively expect the appearance of infinite loops belownc to be reflected in a diverging average
length, but we show in the last part of the paper that this result is not in contradiction with the
predictions of conformal invariance.

2. Average loop length and the free energy

The average length of non-crossing loops in a given configurationC on the honeycomb lattice
is given by

〈L(C)〉 = N − V
P

(2.1)

since a given site belongs to at most one loop, and its ensemble average with respect to
equation (1.1) is

L̄ = 1

Z

∑
C

N − V
P

nP tV . (2.2)

Introducing the partial derivatives∂n and∂t with respect ton andt one has:

∂n(ZL̄) = 1

n

∑
C
(N − V )nP tV (2.3)

∂tZ = 1

t

∑
C
V nP tV . (2.4)
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Eliminating the average number of voids between these two relations gives

∂n(ZL̄) = 1

n
[NZ − t∂tZ] (2.5)

or, in terms of the free energy,

∂nL̄

N
+ L̄∂nF = 1

n
[1− t∂tF ]. (2.6)

Now, if ∂nL̄ remains finite the first term on the left-hand side of equation (2.6) becomes
negligible in the thermodynamic limit, and we obtain a simple relation betweenL̄ and the
partial derivatives ofF(n, t),

L̄ = 1− t∂tF
n∂nF

(2.7)

which generalizes Kast’s relation [18] to non-zero temperature.
Several remarks are in order here:

• The validity of relation (2.7) relies on the finiteness of∂nL̄, which in turn, as is seen from
equation (2.7), holds as long as∂n∂tF and∂2

nF remain finite, andn and∂nF do not vanish.
As we shall see below, these conditions can be shown explicitly to be fulfilled for fully
packed (t = 0) loops on the honeycomb lattice, for alln > 0.
• The knowledge ofF(n, t) along a critical line in the(n, t) plane is not sufficient to obtain

the average length̄L, as it provides only one relation between∂nF and∂tF , through the
total derivative dnF , and in general it is not possible to expressL̄ as a function of dnF
alone.
• One can also write relations for̄P , the ensemble average number of loops [10]:

P̄ = 1

Z

∑
C
P(C)nP tV . (2.8)

One has from equations (1.1) and (1.2)

P̄ = n

Z
∂nZ = Nn∂nF. (2.9)

Taking the derivative of equation (2.9) with respect ton, one finds

∂nP̄ = ∂nZ

Z
+ n

[
∂2
nZ

Z
−
(
∂nZ

Z

)2
]
= 1

n

(
P 2 − P̄ 2

)
(2.10)

which yields an explicit expression for the fluctuations in the loop number:

1

N
(P 2 − P̄ 2) = n∂nF + n2∂2

nF. (2.11)

Relations (2.9) and (2.11) show that the average number of loops is extensive (except for
n = 0) and that its fluctuations become negligible in the thermodynamic limit, as long
as∂nF and∂2

nF remain finite. It is also interesting to note that for a perfect gas at fixed
chemical potential the fluctuations in the numberM of particles in a given volume are
given by

M2 − M̄2 = M̄ (2.12)

so the second term on the right-hand side of equation (2.11) may be viewed as a correction
with respect to the fluctuations in a ‘perfect gas’ of loops, induced by the non-overlapping
condition.
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Before leaving this section we briefly comment on the appropriate form of the relation (2.7)
for lattices with higher coordination number. As an example, consider the O(n)model on the
square lattice, for which the partition function has a slightly more complicated form than the
one given in equation (1.1), since each vertex can be visited by the loops in several ways that
are unrelated by rotational symmetry. Following [11] we define

ZO(n) =
∑
C
tNt uNuvNvwNwnP (2.13)

whereNt ,Nu,Nv andNw are the number of vertices visited by respectively zero, one turning,
one straight, and two mutually avoiding loop segments. The relation (2.1) must be replaced
by

〈L(C)〉 = N −Nt +Nw
P

(2.14)

and under assumptions on the higher derivatives identical to those given above the
generalization of equation (2.7) finally reads

L̄∂nF = 1

n
(1− t∂tF +w∂wF). (2.15)

3. Zero-temperature case: fully packed loops

At t = 0, configurations containing voids do not contribute toZ, and on the honeycomb lattice
every site must belong to one and only one loop. The system of loops is then calledfully packed
or ‘compact’, to distinguish it from the ‘dense’ phase [3,17] with a finite density of voids found
at non-zerot . A necessary condition for thet = 0 line to be stable (in the renormalization
group (RG) sense) is thatZ(n, t) is invariant under the replacement oft by −t [19]†. This
symmetry criterion is fulfilled because the honeycomb lattice is bipartite and hence only allows
for loops ofevenlength. For the model at hand the condition is also sufficient (see [20] for an
example where this is not the case), and as a consequence, thet = 0 line is critical forn 6 2
and fully packed loops (FPLs) are in a different universality class than dense loops [19,21–24].
The relation (2.7) reduces fort = 0 to the form obtained by Kast [18]:

L̄(n) = 1

nF ′0(n)
(3.1)

whereF0(n) = F(n, t = 0), and it is particularly interesting as explicit expressions are known
for the free energy in that case, thanks to the work of Baxter [25], Reshetikhin [26], Batchelor
et al [21], and Kast himself [18]. One has for the free energy per site of the honeycomb lattice

• for n < 2:

F0(n) = 1

2

∫ ∞
−∞

dx
sinh2 λx sinh(π − λ)x
x sinhπx sinh 3λx

(3.2)

whereλ > 0 andn = 2 cosλ.
• for n > 2:

F0(n) = 1

2
log

[
q1/3

∞∏
m=1

(1− q−6m+2)2

(1− q−6m+4)(1− q−6m)

]
(3.3)

whereq = eγ andn = 2 coshγ .

† Negative values oft correspond to an antiferromagnetic interaction in the spin language.
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Analytically, it is known that at the critical pointnc = 2,F0(n) takes the value [21,25]†

F0(2) =
∫ ∞

0

du

u

sinh2 u

sinh 3u
e−u = −1

2

∞∑
m=1

log

[
1− 1

(3m− 1)2

]
= 1

2
log

[
303(1/3)

4π2

]
= 0.189 56. . . . (3.4)

The analytic calculation can be pushed further, noting that forn < 2 equation (3.2) can be
re-expressed as

F0(λ)− F0(λ = 0) =
∫ ∞

0
du

sinh3 u

u sinh 3u

[
1− 1

tanh(πu/λ)

]
= −

∫ ∞
0

dv

v

sinh3(λv/π)

sinh(3λv/π)

[
1

tanhv
− 1

]
. (3.5)

This expression can then be expanded in powers ofλ. To lowest order this reads:

F0(λ)− F0(λ = 0) ' − λ2

3π2

∫ ∞
0

dv v
e−v

sinhv
= − 2λ2

3π2

∫ ∞
0

dv
v

e2v − 1
= −λ

2

36
. (3.6)

In terms of the loop fugacityn, this yields

dF0

dn

∣∣∣∣
n→2−

= dF0

dλ

dλ

dn

∣∣∣∣
λ→0+

= 1

36
(3.7)

so we obtain an unexpectedly simple result for the average length of the FPLs at the critical
point

L̄0(n = 2) = 18. (3.8)

A similar analysis can be performed forn > 2, rewriting, for example, equation (3.3) as

F0(n)− F0(2) = γ

6
− 1

2

∞∑
m=1

fm (3.9)

with

fm = log

[
g(6mγ )g([6m− 4]γ )

g2([6m− 2]γ )

]
(3.10)

andg(x) = 1
x
(1− e−x). The terms in equation (3.9) have been grouped so as to make it more

convenient to use the Taylor–McLaurin summation formula
∞∑
m=1

fm =
∫ ∞

0
dy f (y)− 1

2f (0)− 1
12f
′(0) + 1

720f
′′′(0) + · · · . (3.11)

The evaluation of equation (3.9) for smallγ then yields for dF0/dn|n→2+ the same value as
equation (3.7).

The calculation of d2F0/dn2 proceeds along similar lines, and the end result reads

d2F0

dn2
= 1

1080
for n = 2 (3.12)

the same value being obtained on both sides of the transition (more generally, one expects all
derivatives ofF0(n) to be continuous forn = 2). Asλ = 0 (n = 2) is the only point where
equation (3.2) may have a singularity, we conclude that Kast’s relation (2.7) remains valid in
the whole regionn < 2, which was nota priori obvious from his derivation.

† Note that there is a misprint in equation (7) of [21].
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As a by-product, one also obtains from equations (2.9) and (2.11) the average number of
FPLs forn = 2:

P0|n=2 = N

18
(3.13)

and its fluctuations:

P 2
0 − P̄ 2

0 |n=2 = N( 1
18 + 1

270). (3.14)

Another interesting case is the limit ofn→ 0. This is the compact polymer (Hamiltonian
cycle) limit, when a single loop covers all the lattice sites (with adequate boundary conditions).
The derivative of equation (3.2) can now be evaluated directly:

dF0

dλ

∣∣∣∣
λ=π/2

= 4

π

∫ ∞
0

du
1− cosh 2u

(1 + 2 cosh 2u)2
= 1

π
− 2

3
√

3
. (3.15)

Thus
dF0

dn

∣∣∣∣
n=0

= dF0

dλ

dλ

dn

∣∣∣∣
λ=π/2

= 1

3
√

3
− 1

2π
(3.16)

and invoking once again equation (3.1) the average loop lengthL̄0(n) diverges as

L0(n) = 30.0344. . .

n
+O(1). (3.17)

One can also show that the second derivativeF ′′(0) = −0.006 846 76. . . is finite.

4. Numerical results on the honeycomb lattice

4.1. Zero temperature

We have checked numerically the analytical expressions given in the literature for the free
energy of the O(n) model att = 0, using a previously developed transfer matrix method [19]
to compute the partition function for strips of finite width, up toWmax = 15. The results can
be further analysed by exploiting the fact that the dominant finite-size corrections are known
from conformal invariance arguments [27,28]

F0(W) = F0(∞)− πc(n)
6W 2

+ · · · (4.1)

wherec(n) is the central charge of the model. The latter has been inferred from the Bethe
ansatz solution of the model [21]

c(n) = 2− 6e2

1− e with n = 2 cos(πe). (4.2)

Carrying out the numerical differentiation onF0(∞) obtained from equation (4.1), rather than
on theF0(W) which are related to the leading eigenvalue of the transfer matrix spectra, we
were able to obtain sufficient accuracy to calculate the derivative dF0/dn, and henceL0(n),
using formula (2.7).

In figure 1 we plotL0(n) in units ofLmin = 6, which is the shortest possible loop length on
the honeycomb lattice. To emphasize the fact that the average loop length does not exhibit any
singularity atnc = 2 these data are shown without the central charge correction. We point out
that it would not have been possible to produce this plot by a direct numerical differentiation
of the analytic results, equations (3.2) and (3.3), as these expressions in their present form
converge extremely slowly close to the critical fugacitync = 2. Actually, we suspect that it
was these difficulties that led Kast [18] to the erroneous conjecture thatL̄(n→ 2+) diverges.
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Figure 1. Average loop lengths, measured in units of six, for the FPL model on the honeycomb
lattice. The finite-size estimates converge rapidly towards the exact valueL̄(n = 2) = 18.

Table 1. Finite-size estimates ofF ′0(n = 0), corrected for the known value ofc, as a function of
strip widthW . The extrapolated value is found by fitting the residual size-dependence to a 1/W4

term.

W F ′0(n = 0)

6 0.031 920 52
9 0.033 047 91

12 0.033 219 45
15 0.033 264 56
∞ 0.033 296(3)
Equation (3.16) 0.033 295 1. . .

Turning now on the correction (4.1) we find the finite-size values ofF ′0(n) given in table 1.
Results are only shown forW a multiple of three, since otherwise the equivalent interfacial
representation [22] will be subject to height defects, leading to the introduction of non-trivial
twist-like operators in the continuum theory [23]. An extrapolation to the thermodynamic limit
W →∞ can be performed by fitting the residual size dependence to a 1/W 4 term [23]. The
result is

1

F ′0(n = 0)
= 30.034(3) (4.3)

in excellent agreement with the analytical result (3.17). In the same manner we find forn = nc

that
1

F ′0(n = 2)
= 35.96(3) (4.4)

confirming equation (3.7).
We have also evaluated numericallyF ′′0 (n = 0) = −0.006 86(2), whereas an attempt to

computeF ′′0 (n = 2) did not lead to a sufficiently accurate result to permit a comparison with
equation (3.12). The reason for this is a combination of the logarithmic corrections to the
scaling form (4.1) [29] and the singularity arising in equation (4.2) when taking the second
derivative with respect ton atn = nc.
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Figure 2. Average lengths of dense and dilute loops on the honeycomb lattice, measured in units
of six.

4.2. Non-zero temperature: dense and dilute loops

As discussed earlier, explicit expressions forF(n, t) are known only along two other special
critical lines in the(n, t) plane, for which Bethe ansatz solutions were given in [14–16]. These
lines, or branches, are given by the relation [3]

t2 = 2±√2− n (4.5)

where the upper sign corresponds to the ‘dilute’ branch and the lower sign to the ‘dense’
branch. We have already remarked that this knowledge is not sufficient to obtain analytically
the average loop length from equation (2.7). However, an accurate numerical determination
of the partial derivatives∂nF and∂tF is possible, using the same transfer matrix approach as
for t = 0, so the variation of̄L along these lines can be studied in detail. The central charge
values used in the extrapolation procedure are now

c(n) = 1− 6e2

1∓ e with n = 2 cos(πe). (4.6)

The resulting values of̄L(n) are displayed in figure 2. Only the data for strip width
W = 9 are displayed, since employing the correction (4.6) renders the residual finite-size
effects indistinguishable on the figure. Extrapolating toW = ∞ we obtain forn = nc = 2

L̄(nc, tc =
√

2) = 19.417(1) (4.7)

which is slightly larger than the corresponding value att = 0. The same is true for the
asymptoticn→ 0 behaviour on the dense branch, for which the numeric result is

L̄dense(n) = 35.70(2)

n
+O(1). (4.8)

At first sight this finding may seem odd, since the geometrical scaling dimension

x2 = 1

2
(1− e)− e2

2(1− e) (4.9)

coincides for the dense and the compact branch [9, 21], implying that the asymptotic
distributions of large loops are identical in the two models [17]. However, the dense phase has
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fewershort loops than the compact one, since it is always energetically favourable to trade a
length-six loop for some empty space:

t6

n
= (2−√2− n)3

n
> 1 (identity atn = 1). (4.10)

Since the perimeter of a length-six loop necessarily has a fixed shape, there is no extensive
entropy involved in the argument, and our simple energetical consideration suffices.

Another remark pertains to the fact thatL̄(n) is anincreasingfunction ofn on the dilute
branch (and, in particular, it does not diverge asn → 0). This has a quite elementary
explanation in terms ofx2 to which we shall come back in section 6.

5. Loops on the square lattice

Many results have also been obtained for systems of loops on the square lattice [7, 8, 11,
23, 24, 30–34], but now there are several possible definitions of the models, depending on
whether one allows the non-overlapping loops to cross at the vertices or not, if there is only
one kind of loops or two, and exactly how the loop segments are allowed to turn at the vertices.
Following [23,24], we consider a model with two kinds (‘flavours’) of loops, with respective
fugacitiesn1 andn2, which both cover allN vertices of the square lattice and can intersect
but not overlap. This can be considered as a particular zero-temperature limit [34] of the O(n)

model on the square lattice [11]. The partition function and the free energy are given by

Z0(n1, n2) =
∑
C
n
P1
1 n

P2
2 (5.1)

F0(n1, n2) = lim
N→∞

1

N
logZ0(n1, n2) (5.2)

where the summation is performed over all doubly compact configurations. The constraint
that both types of loops cover allN sites implies that for each configuration the average length
of type-1 loops is just〈L1(C)〉 = N/P1, and its ensemble average is given by

L1 = 1

Z0

∑
C

N

P1
n
P1
1 n

P2
2 . (5.3)

Repeating the calculation of section 2 one obtains

∂n1(Z0L1) = N Z0

n1
(5.4)

and
1

N
∂n1L1 +L1∂n1F0 = 1

n1
. (5.5)

Now, if ∂n1L1 remains finite, the first term in the left-hand side of equation (5.5) is negligible
in the thermodynamic limit, and we obtain

L1 = 1

n1∂n1F0
. (5.6)

A similar relation holds for the average lengthL2 of the second kind of loops, withn2 replacing
n1, and whenn1 = n2 both reduce to Kast’s relation (3.1).

One can also define the average lengthL̄ of anyloop, regardless of flavour. Following the
above line of reasoning this is easily shown to fulfil the relation

L̄ = 2
L1L2

L1 +L2
. (5.7)
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Forn1 = n2 the above statement is trivial. Taking, however, the limitL2→∞ we obtain the
curious result that

L̄ = 2L1 for n2→ 0 (5.8)

regardless of the value ofn1.
Since the model (5.1) has, as yet, defied a Bethe ansatz solution, no analytical expressions

for F0(n1, n2) are available (apart from the conjectureF0(0, 0) = 1
2 log 2 [23]). We have

therefore studied relation (5.6) numerically as a function ofn1, for different values ofn2 = 0, 1
and 2. Transfer matrix computations were performed for strips of even width, up toWmax= 12,
exploiting the fact that [23]

c(n1, n2) = 3− 6e2
1

1− e1
− 6e2

2

1− e2
. (5.9)

Extrapolating as usual toW = ∞ we find for the average loop lengths atn1 = 2:

L1(n1 = 2, n2) =


15.74(5) for n2 = 0

13.95(3) for n2 = 1

11.99(2) for n2 = 2

(5.10)

and for its divergence whenn1→ 0:

L1(n1→ 0, n2) = A

n1
+O(1) with


A = 21.97(6) for n2 = 0

A = 20.35(3) for n2 = 1

A = 18.96(3) for n2 = 2 .

(5.11)

A striking fact is that for the symmetric casen1 = n2 = nc = 2, which corresponds to the
four-colouring model introduced in [8], the numerical value of the average length of either
kind of loops is

Lc/Lmin = 2.997(4) (5.12)

where we have normalized with respect to the length of the shortest possible loop on the square
lattice,Lmin = 4. The ratio (5.12) is extremely close to three, which by equation (3.8) is the
exact result for the zero-temperature O(n) model on thehoneycomblattice.

In order to see if this could be more than a coincidence, we have looked at another model
on the square lattice, describing theq-state Potts model at its self-dual point [7]. We briefly
recall how the Potts model is transformed into a loop model [7]: In a first step the spin model
(with coupling constantK) is turned into a random cluster model [35]. Each state is now a
bond percolation graph in which each connected cluster is weighed byq and each coloured
bond carries a factor of(eK − 1). Next, the clusters are traded for loops on the medial graph
(the lattice formed by the mid-points of the bonds on the original lattice). By the Euler relation
each closed loop is weighed by

√
q, and the bond weights are(eK−1)/

√
q [7]. At the self-dual

point the latter equals one by duality, and the exact correspondence is

ZPotts= qN/2
∑
C

√
q
P ≡ qN/2ZLoop (5.13)

whereN is the number of sites of the original lattice.
DefiningF as the free energy per medial site with respect toZLoop, one has [7]

• for n < 2:

F(n) = 1

2

∫ ∞
−∞

dx
sinhλx sinh(π − λ)x
x sinhπx coshλx

(5.14)

whereλ > 0 andn = √q = 2 cosλ.
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• for n > 2:

F(n) = λ

2
+
∞∑
m=1

e−mλ

m
tanhmλ (5.15)

wheren = √q = 2 coshλ.

The value at the critical pointnc = 2 is also known:

F(n = 2) =
∫ ∞

0

du

u
tanhue−u = 0.78318. . . (5.16)

and as in section 3 we can evaluate the derivative dF/dn|n→2− by examining the difference

F(λ)− F(λ = 0) = −
∫ ∞

0

dv

v
sinh(λv/π) tanh(λv/π)

[
1

tanhv
− 1

]
. (5.17)

At the bottom line we obtain

L̄(n = 2) = 12 (5.18)

or Lc/Lmin = 3, the same result being found also forn → 2+. Forn → 0 the average loop
length diverges as

L̄(n) = 16

n
+O(1). (5.19)

Both these results are in excellent agreement with numerical estimates produced by the transfer
matrices described in [36].

Our computations for the Potts model suggest that the result (1.3) is not a mere coincidence,
and we feel confident in conjecturing thatL̄/Lmin = 3 is also exactly true for the four-colouring
model, cf equation (5.12). It would be quite surprising if this ratio were a new universal
quantity, like, for instance, the ratio of the average loop area to the average square gyration
radius, calculated by Cardy [10]. Rather it is reminiscent of the ‘quasi-invariants’ found in
percolation theory: for a large variety of lattices, the percolation thresholds are observed to be
little lattice-dependent, for a fixed dimensionality, once they are properly normalized taking
into account the coordination number [37].

6. Discussion and contact with conformal invariance predictions

The most striking aspect of the results presented above is that the average loop length remains
finite, even inside the critical phase where the correlation length, which is roughly the size
of the largest loop in a typical configuration, diverges. In fact, a little thought shows that the
apparent paradox comes from the definition of ‘average length’: in our calculations all loops are
equally weighted, irrespective of their length. This is called the ‘number average’ in polymer
theory, to distinguish it from the ‘weight average’, where each polymer contributes with a
weight proportional to its length. Depending on the quantity being measured, these and still
other averages are relevant in order to compare theoretical predictions with experiments (see,
e.g., the treatise by des Cloizeaux and Jannink [38] for a detailed discussion). An analogous
situation arises in percolation theory, when one defines the ‘average cluster size’ [12]: if one
means ‘the average size of the cluster on which an ‘ant’ lands at random’, the weight average
has to be taken, which is different from the average size obtained by simply giving every cluster
the same weight. In practice these various averages may be very different when the quantity
considered has a power law distribution, as the result may be dominated in one case by the few
largest polymers or clusters, and in another case by the numerous small ones.
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This is precisely what happens in the loop systems considered here: in the critical phase
(n 6 2) the (ensemble averaged) probability distribution of loop lengths (unweighted) is
expected to be of the form

5(L) ∼ L−τ (6.1)

where the exponentτ is related to the geometrical (string) scaling dimension [4,17]x2 by

τ − 1= 2

2− x2
. (6.2)

Conformal invariance arguments have permitted the exact evaluation ofx2 for all loop models
discussed in this paper. These are [9,17,21,23,24]

x2 = 1

2
(1∓ e)− e2

2(1∓ e) with n = 2 cos(πe) (6.3)

where the upper sign holds for any one of the compact or dense phases, and the lower sign
for the dilute O(n) phase (see [34] for a discussion of this kind of universality). In particular,
3> τ > 2 for all 0< n < 2. This implies that thenumber-averaged loop length

L̄ =
( Lmax∑
L=Lmin

L5(L)

)/( Lmax∑
L=Lmin

5(L)

)
(6.4)

converges, as we have shown explicitly. On the other hand, one can pick a point at random
on the lattice and ask what is the average length of the loop to which it belongs. Thatweight-
averaged length is given by

L∗ =
( Lmax∑
L=Lmin

L25(L)

)/( Lmax∑
L=Lmin

L5(L)

)
(6.5)

and it diverges likeL3−τ
max for large system sizes. In these equationsLmax is not the largest loop

that can be placed on theN -site lattice (a Hamiltonian cycle of lengthN ) but, rather, the loop
size up to which the scaling law (6.1) is valid. On an`× ` lattice this is given byLmax∼ `Df ,
where [17]

Df = 2− x2 (6.6)

is the fractal dimension of the loop. Using equation (6.2) we then find

L∗ ∼ (`2)Df−1 ∼ NDf−1. (6.7)

For the four-colouring model Kondev and Henley [8] have confirmed this picture in detail
using Monte Carlo simulations with non-local loop updates. In particular the power-law
distribution of loop lengths (6.1) was confirmed very accurately, with the expected value
τ = 7

3. However, these authors did not examine the finite-size dependence ofL∗. In order
to verify the validity of equation (6.7) we have performed Monte Carlo simulations along the
lines of [8] on several lattice sizes, up to`max= 200. In each case the system was equilibrated
by means of 105 loop flips, whereafter the lengths of a further 106 loop updates were registered.
(A detail of a typical loop configuration is shown in figure 3.) We found that

L∗ ∼ `1.03±0.04 (6.8)

in good agreement with equation (6.7), since the fractal dimension is known to be exactly
Df = 3

2 [8]. Unfortunately, it is not possible to relateL∗ directly to the partition function and
to obtain relations analogous to those holding forL̄.
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Figure 3. Detail of a typical configuration in the four-colouring model. The two loop flavours
consist of the black and white lattice edges respectively. A loop passing through a randomly
chosen point is likely to be very long, like the one of length 1076 shown in bold. The presence
of numerous short loops, however, explains why the (number) averaged loop length is finite in the
thermodynamic limit:L̄ = 12.

Let us end by commenting on the divergence ofL̄ asn → 0. By naively integrating
equation (6.1) with a lower cut-offLmin and using scaling relations one finds

L̄(n) ∼ 2Lmin

x2
. (6.9)

Since from equation (4.9)x2→ 0 asn→ 0, it is not surprising that̄L is found to diverge for
compact and dense loops. On the other hand, for the dilute phasex2 as given by equation (6.3)
does not vanish asn→ 0, in accordance with figure 2. In fact one has the rough estimate

L̄(n = 2)

L̄(n = 0)
' 3

4
(6.10)

which is not too far off the numerical value of≈0.72.
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